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Abstract

This paper provides a theory for quantifying the hysteresis and constitutive nonlinearities in-
herent to piezoceramic compounds through a combination of free energy analysis and stochastic
homogenization techniques. In the first step of the model development, Helmholtz and Gibbs free
energy relations are constructed at the lattice or domain level to quantify the relation between the
field and polarization in homogeneous, single crystal compounds which exhibit uniform effective
fields. The effects of material nonhomogeneities, polycrystallinity, and variable effective fields are
subsequently incorporated through the assumption that certain physical parameters, including the
local coercive and effective fields, are randomly distributed and hence manifestations of stochastic
density functions associated with the material. Stochastic homogenization in this manner provides
low-order macroscopic models with effective parameters that can be correlated with physical prop-
erties of the data. This facilitates the identification of parameters for model construction, model
updating to accommodate changing operating conditions, and control design utilizing model-based
inverse compensators. Attributes of the model, including the guaranteed closure of biased minor
loops in quasistatic drive regimes, are illustrated through examples.
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1 Introduction

The capability of piezoelectric materials to both actuate and sense derives from the noncentrosym-
metric nature of the compounds. At very low input field levels, changes in the ionic structure
produce reversible changes in the polarization whereas dipole switching at higher field inputs yields
irreversible increments in the polarization. This generates strains in the material and provides it with
actuator capabilities. Alternatively, applied stresses also alter the ionic configuration which gener-
ates the voltages measured in piezoelectric sensors. The two mechanisms are respectively termed the
converse and direct piezoelectric effects.

The coupled converse and direct electromechanical effects are highly sensitive and repeatable
which makes PZT transducers the present choice for applications such as nanopositioning and sensing.
For example, the PZT positioning elements in an atomic force microscope (AFM) can be used to
achieve angstrom-level displacements while PZT sensors are presently being investigated for use in
multistage nanopositioners [7]. However, the polar mechanisms which provide piezoelectric materials
with the dual converse and direct effects, and extreme electromechanical sensitivity, also produce
varying degrees of hysteresis and constitutive nonlinearities as illustrated in Figure 1 for PZT5A.
Hysteresis is an inherent property of noncentrosymmetric compounds at all drive levels and is due to
the irreversible changes which accompany dipole switching; furthermore, saturation at the domain
level and material nonhomogeneities contribute nonlinear effects. Both the hysteresis and constitutive
nonlinearities must be accommodated for high performance applications utilizing PZT actuators and
sensors.

For a broad range of applications, feedback laws can be employed to mitigate the deleterious
effects of hysteresis and constitutive nonlinearities. This has led to the successful use of piezoelectric
transducers in applications ranging from hybrid motor design to structural acoustic control (e.g., see
[4, 9, 14, 38]). In other regimes, however, noise to signal ratios and fundamental control issues limit
the degree to which feedback design can solely be employed to linearize the response of piezoelectric
actuators. For example, the positioning elements in atomic force microscopes and nanopositioners
are comprised of stacked or cylindrical PZT actuators. At low drive frequencies, high gain feedback
laws are presently employed to attenuate hysteresis and nonlinearities thus leading to the phenomenal
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Figure 1. Hysteresis measured at 200 mHz in PZT5A for peak inputs of 600 V, 800 V, 1000 V and
1600 V.
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success of the devices. However, at the higher frequencies required for large scale product diagnostics
or real-time monitoring of biological processes, the efficacy of feedback laws is diminished by inherent
thermal and measurement noise. Robust control design can be used to extend the frequency ranges
of operation [27], but the loop shaping and gains required to attenuate hysteresis have the negative
effect of accentuating high frequency noise. One technique for circumventing these limitations is
to develop feedforward or feedback loops which utilize highly accurate and efficient model-based
inverse compensators. Models designed for this use must satisfy at least three properties: (i) they
must accommodate transient dynamics, (ii) they must guarantee closure of biased minor loops, and
(iii) they must be sufficiently efficient to permit real-time control implementation. In this paper,
we develop a macroscopic polarization model through the combination of free energy principles at
the lattice level and stochastic homogenization techniques which guarantees properties (i) and (ii).
Furthermore, initial investigations attest to its potential for real-time control implementation (iii).

To provide a context for the approach, we first summarize techniques that have recently been
developed for quantifying the hysteretic field-polarization relation in piezoelectric materials. These
techniques can be roughly categorized as employing energy principles, phenomenological principles,
or a combination of the two, to construct microscopic, mesoscopic (domain or lattice level), or
macroscopic models.

Microscopic and mesoscopic models typically employ fundamental electromagnetic or elastic en-
ergy relations to quantify the nonlinear dependence of the polarization P on input fields E [19].
These theories provide a framework for fundamentally quantifying material properties at the lat-
tice level and may be necessary for optimal material design. However, for control applications, the
large number of required parameters and states precludes real-time implementation using present
hardware.

Macroscopic models are typically based on phenomenological principles, thermodynamic tenets,
or energy formulations employed in concert with homogenization techniques. The former category
includes Preisach models, which were originated for magnetic hysteresis [22], and have subsequently
been extended to piezoceramic materials [10, 26]. The advantage of Preisach theory lies in its
generality and strong mathematical foundations which provide a framework for quantifying hysteresis
when the underlying physics is poorly understood. However, the generality of the technique also
yields models which have a large number of nonphysical parameters. Hence physical attributes of the
data are difficult to utilize when identifying parameters or updating models to accommodate changing
operating conditions although a number of extensions to the classical Preisach theory have recently
been proposed to facilitate identification of parameters through correlation with physical principles
[8, 20]. Moreover, the original Preisach theory does not accommodate reversible effects or variable
temperature, broadband operating conditions, and the modifications required to accommodate these
effects can significantly diminish the efficiency of resulting models.

Macroscopic models based on energy techniques provide a compromise between microscopic or
mesoscopic models and solely phenomenological models. Models in this category include the theory
of Chen and Lynch [5], quasistatic hysteresis models of Huang and Tiersten [12] and the domain wall
theory of Smith, Hom and Ounaies [32, 33]. While the underlying assumptions, specific formulations,
and final goals differ in the respective approaches, similar strategies are employed when constructing
models. In each case, energy relations are derived at the lattice or domain level and averaging
techniques are invoked to obtain macroscopic models having a small number of effective parameters.
For example, in the theory of [5], energy relations at the grain level are combined with macroscopic
averaging over grain configurations to quantify strains and polarization in the aggregate material.
In the domain wall theory of [32, 33], energy principles are employed to quantify local changes in
polarization due to domain wall movement. These effects are then averaged to obtain macroscopic
models for bulk material characterization and control design.
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The theory presented here is based on energy relations derived at the lattice or domain level with
stochastic homogenization techniques employed to construct macroscopic models having a small
number of effective parameters. In the first step of the development, Boltzmann principles are used
to construct an expression for the Helmholtz energy through a balance of the internal energy due
to positive or negative dipole configurations and entropy effects. The inclusion of the electrostatic
work term provides a Gibbs relation which quantifies changes in the energy landscape due to an
applied field. It is illustrated that minimization of the Gibbs energy yields a local polarization model
that quantifies the phase transition from the ferroelectric to paraelectric state as temperatures are
increased through the Curie point. Furthermore, this local relation is also the Ising model employed
as an anhysteretic kernel in the domain wall theory of [32, 33]. For implementation purposes, two
asymptotic approximations are invoked: (i) a quadratic approximation to the Gibbs energy is con-
structed for fixed temperature regimes, and (ii) an algebraic model is constructed for the limiting
case of negligible thermal activation. This provides a highly efficient technique for quantifying the
E-P relation in single crystal, homogeneous materials with uniform effective fields. In the final step
of the model development, the effects of polycrystallinity, material nonhomogeneities, and nonuni-
form effective fields are incorporated by considering physical parameters such as the coercive and
effective fields to be manifestations of stochastic distributions. This is motivated by the assumption
that different domains have different energy characteristics, and it yields macroscopic models with
parameters that effectively homogenize or average the material properties. It is illustrated through
fits to experimental data that in spite of the incorporation of stochastic averages, several of the
effective parameters can be directly correlated with physical properties of the data to aid parameter
identification and model updating. It is also illustrated that the model enforces the deletion property
and guarantees closure of both symmetric and asymmetric, biased minor loops. The model does not
enforce congruency near saturation which reflects the observation that the measured E-P response
of the materials also does not exhibit congruency in these regions.

We note that while the specific motivation differs, analogous concepts involving stochastically dis-
tributed parameters are employed in Preisach formulations for magnetic compounds [8] and discrete
models for shape memory alloys (SMA) based on elastic chains constructed from bi-stable elements
[23, 24, 25].

To place the theory in a broader context, we note that the free energy analysis used to construct
the Helmholtz and Gibbs relations is an extension of the Müller-Achenbach-Seelecke theory for SMA
[21, 29, 30] whereas an analogous technique utilizing free energy relations in concert with stochastic
distributions for the coercive and effective fields has been developed and implemented for ferromag-
netic compounds [31]. Hence the technique provides a general methodology for quantifying hysteresis
and constitutive nonlinearities inherent to a broad range of ferroic compounds [35]. Furthermore, it
is illustrated in [37] that the theory provides an energy basis for Preisach models with two important
differences: (i) the physical nature of parameters in the proposed model facilitates correlation with
properties of the data, and (ii) temperature and relaxation dependencies are incorporated in the basis
rather than in parameters as is the case for Preisach formulations. The latter property eliminates the
necessity of vector-valued weights or lookup tables for material characterization and control design.

2 Free Energies for Materials with Homogeneous Lattices

Energy formulations for commonly employed ferroelectric materials can be motivated by changes
which occur in the ionic structure during phase transitions and in response to input fields and
stresses. To simplify the discussion, we will focus on barium titanate BaTiO3 and the piezoelectric
compound Pb(Zr,Ti)O3 or PZT. As detailed in [18], currently employed PZT transducer materials
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are comprised of PbTi1−xO3 and PbZrxO3 with x chosen to optimize electromechanical coupling.
The motivating discussion will emphasize PbTiO3 but analogous conclusions hold for PbZrO3 and
BaTiO3.

These compounds are isostructural with the mineral perovskite (CaTiO3) and exhibit what is
termed a perovskite structure comprised of a cubic form at temperatures T above the Curie point Tc

and a tetragonal form for T < Tc. We initially consider the idealized case of homogeneous materials
having uniform lattices; hence for T > Tc, a unit cell at any point in the material will have the cubic
ionic structure illustrated for PbTi1−xO3 in Figure 2a. At temperatures below Tc, the materials
distorts from the cubic to tetragonal form through the biasing of Ti4+ ions toward O2− pairs as
illustrated for BaTiO3 on page 71 of [16]. In the absence of an applied electric field E, this ionic
configuration produces a double well potential energy profile which varies as a function of the Ti4+

position. As depicted in Figure 3, the application of an electric field distorts the energy landscape and
a dipole switch occurs when the equilibrium value determining the Ti4+ position exceeds the unstable
equilibrium due to the central O2− pairs. At the macroscopic scale, this produces a discontinuous
jump in the polarization as experimentally illustrated for single crystal BaTiO3 on pages 72-76 of [16].

2.1 Helmholtz Energy

We consider two techniques to quantify the Helmholtz free energy depicted in Figure 2c and 3b;
the first is based on statistical mechanics principles and the second, while motivated by the first, is
phenomenological.

Based on the assumption of material homogeneity, we consider a uniform lattice of volume V
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Figure 2. (a) Perovskite structure of PbTiO3 in the cubic form above Tc. (b) Tetragonal structure
of PbTiO3 for T < Tc and resulting spontaneous polarization. (c) Helmholtz free energy as a function
of Ti position along the x3-axis.
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Figure 3. (a) Helmholtz energy ψ and Gibbs energy G for increasing field E. (b) Local polarization
P as a function of E for a homogeneous, isotropic material.

and mass m having N cells of the form depicted in Figure 2. Each cell is assumed to have dipole
orientation si = ±1 and dipole moment p0 so the polarization for the lattice is

P =
p0

V

N∑
i=1

si

=
Ps

N
(N+ −N−) .

(1)

Here Ps = Np0/V denotes the saturation polarization which occurs when all dipoles are positively
aligned and N+ and N− respectively denote the number of cells having positive and negative orien-
tations. From the second equality in (1) and the fact that N+ + N− = N , it follows that

N+ =
N

2

(
1 +

P

Ps

)
, N− =

N

2

(
1− P

Ps

)
. (2)

To compute the internal energy due to dipole reorientation, we let Φ0 denote the energy required
to reorient a single dipole when the lattice is completely ordered (P = Ps). For a general lattice or-
dering, the energies required to convert a dipole with positive orientation to negative, and conversely,
are respectively

Φ+− =
N+

N
Φ0 , Φ−+ =

N−
N

Φ0. (3)

We point out that these energy expressions are derived under the assumption that dipoles interact
only with adjacent neighbors (e.g., see [11]).

The change in the internal energy due to dipole reorientation can then be expressed as

dU = [Φ+−dN− + Φ−+dN+]
1
V

. (4)

By utilizing the relations (2) and (3), the expression (4) can be integrated to obtain the internal
energy relation

U =
Φ0N

2V

(
1− P 2

P 2
s

)
+ U0
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where U0 denotes the energy for the completely ordered state. Since internal energy measures are
relative, we take U0 = 0 in subsequent relations.

The Helmholtz energy for the lattice is given by

ψ = U − ST

where S denotes the entropy. From classical statistical mechanics arguments in combination with
Stirling’s formula (e.g., see [11]), the entropy is given by

S =
k

V
ln

[(
N
N+

)]

=
k

V
ln

[
N !

N−! N+!

]

=
kN

V

[
ln 2− 1 + P/Ps

2
ln

(
1 +

P

Ps

)
− 1− P/Ps

2
ln

(
1− P

Ps

)]

=
−kN

2V Ps

[
P ln

(
P + Ps

Ps − P

)
+ Ps ln

(
1−

(
P

Ps

)2
)]

+ S0

where k denotes Boltzmann’s constant and S0 = kN
V ln 2. As with U0, we neglect S0 in the final

relation for the Helmholtz energy since we are interested in a relative, rather than absolute, measure
of energy.

The resulting Helmholtz free energy is

ψ(P, T ) =
Φ0N

2V

[
1− (P/Ps)2

]
+

TkN

2V Ps

[
P ln

(
P + Ps

Ps − P

)
+ Ps ln(1− (P/Ps)2)

]

=
EhPs

2
[
1− (P/Ps)2

]
+

EhT

2Tc

[
P ln

(
P + Ps

Ps − P

)
+ Ps ln(1− (P/Ps)2)

]
.

(5)

In the second expression of (5), Eh = NΦ0
V Ps

is a bias field and Tc = Φ0
k denotes the Curie tempera-

ture for the material. As illustrated in Figure 4, the relation (5) yields a double well potential at
temperatures T < Tc whereas behavior indicative of paraelectric materials is reflected by the single
potential produced at T > Tc. However, the logarithmic nature of the entropic term reduces the
efficiency of algorithms which employ this relation and makes it difficult to correlate parameters in
the model with physically measured properties of the data.

A second technique for constructing the free energy, which addresses these difficulties, is based
on the observation that for fixed temperatures, a first-order approximation to the Helmholtz relation
(5) exhibits a quadratic dependence on the polarization in neighborhoods of all three equilibria. This
motivates the piecewise quadratic definition

ψ(P ) =


1
2η(P + PR)2 , P ≤ −PI

1
2η(P − PR)2 , P ≥ PI

1
2η(PI − PR)

(
P 2

PI
− PR

)
, |P | < PI

(6)

for the Helmholtz energy for fixed temperature regimes. As illustrated in Figure 3a, PI and PR

respectively denote the positive inflection point and polarization at which the minimum occurs. The
relation between these points and local properties of the hysteresis kernel will be established in
subsequent discussion. It will also be illustrated later that η can be interpreted as the reciprocal
slope ∂E

∂P of the hysteron in the post-switching linear regime.
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Figure 4. Helmholtz free energy specified by (5) for (a) T < Tc, and (b) T > Tc.

2.2 Gibbs Energy

To construct a Gibbs free energy which exhibits the behavior depicted in Figure 3a, the relation
UE = −p · E quantifying the potential energy of a dipole p in the field E is combined with the
Helmholtz energy throughout the lattice to yield

G = ψ − EP (7)

for ψ given by (5) or (6). In the absence of applied stresses, the Gibbs relation (7) is used to
characterize the energy landscape for homogeneous materials having a uniform lattice structure.

2.3 Local Average Polarization

The probability of obtaining the energy level G for a lattice volume V is specified through
Boltzmann principles to be

µ(G) = Ce−GV/kT (8)

where C is an integration constant chosen to yield a probability of 1 for integration over all admissible
input values. For model identification, the volume V is typically chosen to yield relaxation behavior
appropriate for the material under consideration.

For a uniform input field E, the local average polarization at the lattice level is given by

P = x+ 〈P+〉+ x− 〈P−〉 (9)

where x+ and x− denote the fractions of dipoles having positive and negative orientations and 〈P+〉
and 〈P−〉 are the expected polarization levels associated with positively and negatively oriented
dipoles.

The evolution of the dipole fractions is specified by the differential equations

ẋ+ = −p+−x+ + p−+x−

ẋ− = −p−+x− + p+−x+

which can be simplified to
ẋ+ = −p+−x+ + p−+(1− x+) (10)
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through the identity x++x− = 1. Here p+− denotes the likelihood of a dipole switching from positive
to negative orientation whereas p−+ denotes the likelihood of switching from negative to positive
(we avoid defining p+− and p−+ as probabilities since they can be unbounded). The likelihoods are
computed by specifying the probability of achieving the energy required for a jump multiplied by
the frequency at which jumps are attempted. This yields the relations

p+− =

√
kT

2πmV 2/3

e−G(E,P0(T ),T )V/kT∫ ∞

P0(T )
e−G(E,P,T )V/kT dP

p−+ =

√
kT

2πmV 2/3

e−G(E,−P0(T ),T )V/kT∫ P0(T )

−∞
e−G(E,P,T )V/kT dP

where P0(T ) is the unstable equilibrium of G and m denotes the mass of the lattice. The denominator
in both cases arises from evaluation of the integration constant C. When implementing the model,
we typically replace P0(T ) by the inflections points PI and −PI , respectively, in the relations for
p+− and p−+ to obtain

p+− =

√
kT

2πmV 2/3

e−G(E,PI ,T )V/kT∫ ∞

PI

e−G(E,P,T )V/kT dP

p−+ =

√
kT

2πmV 2/3

e−G(E,−PI ,T )V/kT∫ −PI

−∞
e−G(E,P,T )V/kT dP

.

(11)

This simplifies the approximation of the integrals and can be motivated by observing that if one
considers the forces ∂G

∂P due to the applied field, maximum restoring forces occur at PI and −PI

(e.g., see pages 332-333 of [6]). Furthermore, for materials with low thermal activation, the points
P0 and −PI coincide in the limit as thermal activation is reduced to zero for positive fields while PI

and P0 coincide for negative fields as illustrated in Figure 5.
The expected polarizations are given by

〈P+〉 =
∫ ∞

P0(T )
Pµ(G) dP , 〈P−〉 =

∫ P0(T )

−∞
Pµ(G) dP .

Specification of the probabilities using (8) and formulation of the integrals in terms of the inflection
points yields the relations

〈P+〉 =

∫ ∞

PI

Pe−G(E,P,T )V/kT dP∫ ∞

PI

e−G(E,P,T )V/kT dP

, 〈P−〉 =

∫ −PI

−∞
Pe−G(E,P )V/kT dP∫ −PI

−∞
e−G(E,P )V/kT dP

(12)

quantifying the expected polarizations respectively due to positively and negatively oriented dipoles.
The summed products of the expectations and phase fractions (9) quantifies the local polarization

P at the lattice level. For materials which are homogeneous and isotropic, this local polarization
will be uniform throughout the material and hence it will also quantify the macroscopic polarization

8



Ec

PI

P

Pmin P0
Pmin

−PI

= − η
EP PR

PR

= η
EP PR+ 

E

P

− EP

(b)(a)

G ψ=

Figure 5. (a) Gibbs energy profile with high levels (– – –) and low levels (——) of thermal activation
in the Boltzmann distribution µ(G) = Ce−GV/kT . (b) Local polarization P given by equation (9)
with high thermal activation (– – –) and limiting polarization P specified by (22) in the absence of
thermal activation (——).

generated in response to an input field. With reasonable accuracy, this model could be used to
quantify the single crystal BaTiO3 behavior depicted on pages 72-76 of [16]. Extensions to the
model to accommodate nonhomogeneous material and field attributes will be provided in Section 3.

The probabilistic nature of dipole switching produces the gradual transitions depicted in Fig-
ures 3b and 5b, with the degree to which transitions are mollified being dependent on the ratio
between GV and kT in the Boltzmann relation (8). Large values of kT , relative to GV , characterize
regimes in which thermal activation is prominent which in turn produces smoother transitions since,
for a fixed field level, dipoles have a higher probability of achieving the thermal energy required to
overcome energy barriers.

For materials and operating regimes in which the relaxation effects due to thermal activation are
negligible, the differential equation model which yields (9) can be simplified to a purely algebraic
model through asymptotic analysis. This can improve the efficiency of model-based characterization
and control algorithms and highlight additional properties of the local model.

As a prelude to this asymptotic analysis, we establish the following theorem.

Theorem 1. Let f be continuous on the interval [−L, L] and let {φj} be a sequence satisfying the
following properties:

(i) φj > 0 for all j

(ii)
∫

φj(y)dy = 1 for all j

(iii) Given ε, δ > 0, there exists j0 such that∫
|y|≥δ

φj(y)|f(y)|dy < ε/3

for all j ≥ j0.

9



Then for x ∈ [−L, L], φk ∗ f converges to f ; that is∫
φj(x− y)f(y)dy → f(x).

Proof. From (ii) it follows that

f(x) = f(x)
∫

φj(y)dy =
∫

f(x)φj(y)dy

so that for x ∈ [−L, L],

φj ∗ f(x)− f(x) =
∫

φj(y)f(x− y)dy −
∫

φj(y)f(x)dy

=
∫

φj(y)[f(x− y)− f(x)]dy .

Furthermore, from the continuity of f , it follows that for fixed ε, there exists δ such that

|f(x− y)− f(x)| < ε/3

for |y| < δ. For this δ, we write

φj ∗ f(x)− f(x) =
∫
|y|<δ

φj(y)[f(x− y)− f(x)]dy +
∫
|y|≥δ

φj(y)[f(x− y)− f(x)]dy < ε

for sufficiently large j. The integral over the region |y| < δ is bounded by ε/3 due to the continuity
of f whereas the integral over |y| ≥ δ is bounded by 2ε/3 for sufficiently large j as a result of (iii).
The convergence follows directly. ¤

We note that if we replace property (iii) by the requirement∫
|y|≥δ

φj(y)dy < ε

and add the assumption that f is measurable and bounded on lR, the sequence φj is termed a Dirac
sequence on lR, and Theorem 1 is a 1-D version of Theorem 3.1 from page 228 of [13].

2.4 Asymptotic Polarization Relation in Absence of Thermal Activation

We now consider initial dipole fractions x̂−, x̂+, and a positive field E for which G(Pmin) ≤ G(P0)
and G(Pmin) < G(Pmin) as depicted in Figure 5a. For simplicity, we consider the piecewise quadratic
Helmholtz free energy model (6) and note that analogous asymptotic analysis holds for the statistical
mechanics model (5). In this case, the minima

Pmin(E) =
E

η
− PR , Pmin(E) =

E

η
+ PR (13)

result from the necessary condition ∂G
∂P = 0. The coercive field for which Pmin = P0 = −PI is given

by
Ec = η(PR − PI) . (14)
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We illustrate first that for kT/V > 0, the Boltzmann probability (8) exhibits Gaussian behavior
in neighborhoods of Pmin and Pmin with variance proportional to kT/V . We will also illustrate that
in the limit kT/V → 0, µ(G) converges to a Dirac distribution.

For P < −PI , µ(G) can be formulated as

µ(G) =
e−[ 1

2
η(P+PR)2−EP ]V/kT∫ −PI

−∞
e−[ 1

2
η(P+PR)2−EP ]V/kT dP

=
e−(P−P min)2ηV/2kT∫ −PI

−∞
e−(P−P min)2ηV/2kT dP

= C(T, β)e−(P−P min)2/2β2

(15)

where

β =

√
kT

ηV

C(T, β) =
[∫ −PI

−∞
e−(P−P min)2/2β2(T )dP

]−1

.

(16)

We now let j = 1/β and define the sequence

φj(P ) =

{
C(T, j)e−(P−P min)2j2/2 , P ≤ −PI

0 , P > −PI .

Since {φj} satisfies (i)-(iii) of Theorem 1, and hence constitutes a Dirac sequence, it follows that

lim
kT/V→0

µ(G) = lim
j→∞

φj(P )

= δ(P − Pmin).
(17)

Analogous behavior is exhibited at Pmin.
The Gaussian behavior of µ, quantified by (15), is depicted in Figure 5a. From the definition of

β, it follows that a decrease in thermal activation is reflected as a decrease in the variance. This
implies that a smaller number of dipoles achieve the energy required to overcome the energy barrier
which yields steeper transitions in the relation between E and P as depicted in Figure 5b.

We now illustrate that the solution to the model (9) converges to the piecewise linear kernel
specified by (13). It is first noted that as kT/V → 0, the limiting solution to (10) is

x+ = x̂+ + (1− x̂+)h(P + PI)

=

{
x̂+ , E < Ec

1 , E > Ec

(18)

where the local coercive field Ec is given by (14) and h denotes the Heaviside function. Corresponding
values for x− are determined through the relation x+ + x− = 1.

11



The expected polarization due to positively oriented dipoles is

〈P+〉 = lim
kT/V→0

∫ ∞

PI

Pe−G(E,P )V/kT dP∫ ∞

PI

e−G(E,P )V/kT dP

= lim
j→∞

j√
2π

∫ ∞

PI

Pe−(P−Pmin)2j2/2 dP

j√
2π

∫ ∞

PI

e−(P−Pmin)2j2/2 dP

= Pmin

(19)

with the limits in the numerator and denominator evaluated using Theorem 1 with f(P ) = P and
f(P ) = 1 for P > P0, f(P ) = 0 for P < P0, respectively. Similarly, the limiting value of 〈P−〉 is

〈P−〉 = Pmin . (20)

From (18)-(22), it follows immediately that for the initial dipole distribution x̂+ and x̂−, the local
polarization is given by

P (E) =

{
x̂−Pmin(E) + x̂+Pmin(E) 0 < E < Ec

Pmin(E) E ≥ Ec

(21)

for positive fields E as depicted in Figures 3 and 5. Analogous results hold for negative fields.
To accommodate multiple transitions, the local polarization resulting from the Helmholtz relation

(6) with no thermal activation can be formulated using Preisach notation (e.g., see [2, 37]) as

[P (E; Ec, ξ)](t) =


[P (E; Ec, ξ)](0) , τ(t) = ∅
E
η − PR , τ(t) 6= ∅ and E(max τ(t)) = −Ec

E
η + PR , τ(t) 6= ∅ and E(max τ(t)) = Ec

(22)

where

[P (E; Ec, ξ)](0) =


E
η − PR , E(0) ≤ −Ec

ξ , −Ec < E(0) < Ec

E
η + PR , E(0) ≥ Ec

denotes the dipole orientation yielding the initial polarization. A depiction of representative initial
polarization values is provided in Figure 8. The transition times are designated as

τ(t) = {t ∈ (0, Tf ] |E(t) = −Ec or E(t) = Ec}

where Tf denotes the final time under consideration. The dependence of P on the local coercive field
Ec defined in (14) is explicitly indicated since the parameter is considered to be distributed in the
next section. We also note that the piecewise linear models (21) or (22) can be obtained directly from
the necessary condition ∂G

∂P = 0; the asymptotic analysis illustrates the consistency of this condition
in the limiting behavior of the full model (9).

12
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Figure 6. (a) Kernel provided by (22), and (b) kernel provided by (23).

Similar analysis can be used to specify the hysteresis kernel which results when G is constructed
using the Helmholtz relation (5) derived through statistical mechanics arguments. The determination
of P through solution of ∂G

∂P = 0 in this case yields

P (E; Eh) = Pstanh
(

E + EhP/Ps

EhT/Tc

)

= Pstanh
(

E + αP

a(T )

) (23)

where
α =

Eh

Ps
, a(T ) =

EhT

Tc
. (24)

The behavior of P specified by (23) is compared in Figure 6 with that defined by (21) or (22) which
was derived from the piecewise quadratic Helmholtz energy. While the two representations yield
similar kernel behavior as dipole switching occurs, the model (23) predicts a local saturation value
of Ps and decreasing slope for increasing field whereas the model (22) predicts linear behavior after
dipole switching with slope 1

η .
The Ising model (23) has been employed in a number of hysteresis models for ferroelectric mate-

rials and its ubiquity is due to the common underlying assumption that dipoles are aligned in only
two configurations: in the direction of the applied field or diametrically opposite to it. As detailed in
[32], quantification of the electrostatic energy under this assumption yields the Ising model whereas
the relaxed assumption that dipoles can orient uniformly yields a Langevin model, which agrees with
the Ising model through first-order terms but predicts a slower saturation rate. In both cases, these
models were employed to quantify the anhysteretic kernel as an initial step in the development of a
macroscopic hysteresis model [32, 33]. The theory developed here differs from the domain wall theory
in [32, 33] in the sense that the Ising model directly quantifies the energy landscape at the lattice
level whereas it provides only an intermediate step in the domain wall theory. The saturation be-
havior of the Ising relation has also motivated its use in phenomenological models. Translates of the
form P = Pstanh(E ±Ec) were employed by Zhang and Rogers [39], and r(x) = tanh(x) provides a
suitable choice for the ridge functions employed in generalized Preisach, or Krasnolselskii-Pokrovskii,
characterizations [2, 3]. The model presented here differs in that it focuses on an energy formulation
for domain processes. This yields a low-order model which, as illustrated in the examples, ensures
closure of biased minor loops.
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3 Polycrystalline Materials with Variable Effective Fields

The local polarization relations (9), (22) and (23) were derived under the assumption of homogeneous
and isotropic material properties and uniform effective fields Ee = E throughout the materials. The
consideration of the local relations throughout the material yields global models which predict instan-
taneous transitions at the coercive field as illustrated in Figures 4, 5 and 6. While such global models
can accurately quantify single crystal behavior of the type experimentally measured for BaTiO3 (e.g.,
see page 76 of [16]), they do not accurately predict the more gradual transition through the remanent
polarization measured in polycrystalline ferroelectric materials. In this section, we incorporate the
effects of nonuniform lattice configurations, polycrystallinity, and variable effective fields to provide
a macroscopic model which accurately characterizes hysteresis in a variety of ferroelectric materials
and ensures closure of biased minor loops.

3.1 Distributions in Remanence Polarization, Lattice, and Coercive Field

As illustrated in Figure 7, nonuniformities in the lattice produce a distribution of Helmholtz and
Gibbs free energy profiles which can be manifested as variations in the local coercive field and local
remanent polarization and can produce differing saturation behavior after dipole switching. Addi-
tional variations in the free energy relations will be produced by stress nonhomogeneities, nonuniform
lattice orientations across grain boundaries, and crystalline anisotropies.

(i) (ii)

Pb

Ti

O

(i) (ii)

G

P P

G

(i) (ii)

(c)

(b) 

P

E

P

E

(a) 

P
RP

I

Figure 7. (a) Nonuniform lattice and polycrystalline structure for PZT; (b) Free energies associated
with lattice widths (i) and (ii); (c) Variations in hysteresis kernel due to differing free energies.

14



For the piecewise quadratic Helmholtz model (6), the variability in the lattice structure can
be incorporated by considering PR, PI or Ec = η(PR − PI) to be manifestations of an underlying
distribution rather than fixed values as assumed in the previous section for single crystals having
uniform lattices. For this model, we consider variations in the local coercive field Ec and make the
assumption that it can be modeled by a log-normal distribution to incorporate the requirement that
Ec > 0. This yields the relation

[P (E)](t) =
∫ ∞

0
[P (E; Ec, ξ)](t)f(Ec) dEc

for the macroscopic polarization where the density f is specified by

f(Ec) = c1 exp

{
−

[
ln(Ec/Ec)

2c

]2
}

(25)

and P is given by (9) or (22). Here c, c1 and Ec are positive constants. In [8], it is illustrated that
if c is small compared with Ec, the mean and variance have the approximate values

〈Ec〉 ≈ Ec , σ ≈ 2Ec c . (26)

As will be illustrated in the examples of Section 4, the relation (26) can be used to obtain initial
parameter estimates based on attributes of measured experimental data. For materials in which the
transition during hysteresis is relatively gradual, a second choice for f is a normal distribution with
mean Ec and variance σ. The lower integration limit of 0 should be retained to enforce nonnegative
local coercive fields.

3.2 Nonuniform Effective Fields

The second extension employed to obtain a macroscopic model for the polarization entails the
consideration of effective fields in the material. As noted in [1, 15, 32, 33], the applied field in
ferroelectric materials is augmented by fields generated by neighboring dipoles which produce non-
homogeneous effective fields in the materials. This produces variations about the applied field which
can significantly alter the measured polarization. To incorporate these field variations, we consider
the effective field to be normally distributed about the applied field. For fixed Ec, the polarization
in this case is given by

[P (E)](t) =
∫ ∞

−∞
c2[P (Ee; Ec, ξ)](t)e−(E−Ee)2/bdEe . (27)

The introduction of variations in the effective field produces domain switching in advance of the
remanence point in accordance with observations from experimental data.

The complete macroscopic polarization model for nonhomogeneous, polycrystalline materials with
variable effective fields, as based on the piecewise quadratic Helmholtz model (6), is then given by

[P (E)](t) = C

∫ ∞

0

∫ ∞

−∞
[P (Ee + E, Ec, ξ)](t)e−E2

e/be−[ln(Ec/Ec)/2c]2dEedEc (28)

where P is specified by (9) or (22). We note that while the model (28) incorporates certain relax-
ation mechanisms, it does not incorporate dynamic elastic effects. Hence this formulation of the
polarization model should be restricted to low frequency drive regimes.

15



Similar arguments can be employed to construct a macroscopic polarization model based on the
Helmholtz free energy relation (5) obtained through statistical mechanics analysis. In this case, we
assume that the bias field Eh is a manifestation of an underlying log-normal distribution to obtain
the global relation

[P (E)](t) = C

∫ ∞

0

∫ ∞

−∞
[P (Ee + E, Eh, ξ)](t)e−E2

e/be−[ln(Eh/Eh)/2c]2dEedEh. (29)

Here P is specified by (9) or (23).
The polarization behavior predicted by (29) differs from that of (28) primarily at high input

field levels. The E-P behavior predicted by (28) reflects the linear behavior associated with the
hysteresis kernel (22) after completion of dipole switching whereas the E-P curve produced by (29)
saturates to zero slope due to the behavior of the hyperbolic tangent kernels. While both models are
appropriate for a number of materials, the saturation behavior and ease with which the respective
models can be implemented are effective criteria for choosing between the models (28) and (29) for
a given application.

3.3 Implementation Issues

To implement the models (28) or (29), it is necessary to approximate the integrals. This can
be accomplished on the semi-infinite domain using Gauss-Laguerre quadrature and on the infinite
domain using Gauss-Hermite quadrature (e.g., see pages 698-699 of [40]). Alternatively, the expo-
nential decay of the kernels can be employed to truncate the domains to finite intervals appropriate
for Gauss-Legendre formulae (see Figure 8a). In all cases, approximation of (28) yields expressions
of the form

[P (E)](t) = C

Ni∑
i=1

Nj∑
j=1

[P (Eej + E; Eci , ξi)](t)e
−E2

ej
/b

e−[ln(Eci/Ec)/2c]2viwj (30)

with a similar relation resulting from the approximation of (29). Here Eej , Eci denote the abscissas
associated with respective quadrature formulae and vi, wj are the respective weights.

For the examples reported in Section 4, we employed composite Gauss-Legendre quadrature on
truncated intervals chosen to be commensurate with nontrivial values of the integrands. To illustrate,
we provide the abscissas and weights employed in the approximation of the integral (27) on the
truncated domain [−L, L] using a four point composite quadrature rule. Letting hj = −L + jh, the
quadrature points and weights on each subinterval [hj−1, hj ] are

Eej1 = hj−1 + h

[
1
2 −

√
15+2

√
30

2
√

35

]
, wj1 = 49h

12(18+
√

30)

Eej2 = hj−1 + h

[
1
2 −

√
15−2

√
30

2
√

35

]
, wj2 = 49h

12(18−√30)

Eej3 = hj−1 + h

[
1
2 +

√
15−2

√
30

2
√

35

]
, wj3 = 49h

12(18−√30)

Eej4 = hj−1 + h

[
1
2 +

√
15+2

√
30

2
√

35

]
, wj4 = 49h

12(18+
√

30)
.

The quadrature points and initial polarization values ξj for E = 0, P = 0, with the hysteresis kernel
(22), are depicted for Nq = 2 (Nj = 8) in Figure 8b.
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Figure 8. (a) Decay exhibited by f2(Ee) = e−E2
e/b and truncated domain [−L, L]. (b) Gaussian

quadrature points • and initial local polarization values ξj (indicated by x) for Nj = 8. (c) Log-
normal density f(Ec) = c1e

−[ln(Ec/Ec)/2c]2 having mean Ec. (d) Distribution of hysteresis kernels
having coercive fields Ec.

A second implementation issue concerns the manner through which the conditional definitions
in (22) are evaluated if this kernel is employed in the hysteresis model. While it is algorithmically
straightforward to implement these conditions using the transition times τ(t), this must be done
for all quadrature points Eej and Eci for each input field value. Implementation in this manner
significantly diminishes the speed of the model evaluation and would likely prohibit the use of the
model for real-time control design and implementation.

An alternative is to formulate the local polarization (22) as

P =
E

η
+ PR∆ (31)

where ∆ = 1 if evaluating on the upper branch of the kernel and ∆ = −1 if evaluating on the lower
branch. The crux of the algorithm focuses on the efficient construction of ∆ which accommodates
the vector nature of the effective field values and coercive fields resulting from the quadrature of
the integrals. Intuitively, the local polarization values associated with each effective field value Eej

will jump when they reach a coercive field Eci . Because both the effective and coercive field values
are distributed, as depicted in Figure 8, this leads to Ni × Nj relations which must be checked for
each input field value E. Hence for the distributed algorithm, ∆ is an Ni × Nj matrix in which
the ijth element specifies whether the jth effective field value Eej has crossed the ith coercive value
Eci to determine whether the associated polarization value is on the upper or lower branch of the
hysteron. The high efficiency of the algorithm is achieved by employing algebraic matrix operations
to construct ∆ rather than conditional statements implemented through if-then constructs.
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To illustrate the algorithm used to compute P using the approximate relation (30), with P given
by (22), we first define the following matrices

∆init =

 −1 · · · −1 1 · · · 1
...

...
...

...
−1 · · · −1 1 · · · 1


Ni×Nj

, Ec =

 Ec1 · · · Ec1
...

...
EcNi

· · · EcNi


Ni×Nj

Ek =

 Ek + Ee1 · · · Ek + EeNj

...
...

Ek + Ee1 · · · Ek + EeNj


Ni×Nj

, O =

 1 · · · 1
...

...
1 · · · 1


Ni×Nj

and weight vectors

W T =
[
w1e

−E2
e1

/b, · · · , wNje
−E2

eNj
/b

]
1×Nj

V T =
[
v1e

−[ln(Ec1/Ec)/2c]2 , · · · , vNie
−[ln(EcNi

/Ec)/2c]2
]
1×Ni

where Ek = E(tk) is the kth value of the input field. The polarization Pk ≈ P (Ek) is then specified
by the following algorithm.

Algorithm 1.

∆ = ∆init

P̂ = 1
ηEc + PRO

for k = 1 : Nk

P = 1
ηEk + PR∆

dE = Ek − Ek−1

∆ = sgn((Ek − sgn(dE)Ec). ∗ (P − sgn(dE)P̂ ). ∗ P )

P = 1
ηEk + PR∆

Pk = CV T PW

end

In this algorithm, .∗ indicates componentwise matrix multiplication and sgn denotes the signum
function. Depending on the methods used for programming, the use of Algorithm 1 rather than
utilizing conditional if-then constructs can reduce runtimes by factors in excess of 100 so that full
multiloop model simulations run in the order of seconds on a workstation. This level of efficiency is
necessary to achieve real-time implementation of control algorithms utilizing this model.

4 Model Validation

To illustrate attributes of the model, we consider two sets of examples. In the first, the capability
of the model to characterize symmetric, major loop properties of PZT5A, PZT5H and PZT4 is
illustrated through comparison with experimental data. For each compound, model parameters
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are estimated through a least squares fit to data at high drive levels and the resulting model is
used to predict the model behavior in lower drive regimes. In all cases, quasistatic drive regimes
are considered. The second example illustrates numerically the capability of the model to quantify
biased minor loop behavior including Raleigh loops at low drive levels and multiply nested loops at
intermediate levels. In concert, these examples illustrate the flexibility of the model for a variety of
materials and operating conditions.

4.1 Determination of Parameters

The continuous model (28) or discretized model (30) contains the parameters PR, η, b, Ec, c and
C which must be specified when quantifying a specific PZT compound. Similar parameters arise in
the model derived through statistical mechanics principles. Asymptotic analysis can be employed to
obtain initial parameter choice which can then be employed in various least squares formulations to
determine parameters which optimize model fits and predictions.

As illustrated in Figure 5, PR denotes the local remanence polarization for a domain and η is the
reciprocal of the slope in the E-P relation after switching. The inclusion of polycrystallinity, variable
effective fields and material nonhomogeneities through the density analysis in Section 3 makes it
difficult to correlate the remanence polarization measured for the bulk material with the local value
PR; hence PR is typically estimated solely through a least squares fit to the data. Moreover, for
the linear relations (22) or (31) for the kernel P , PR and C produce analogous scaling in the bulk
polarization so that they can be combined when estimating parameters. The slope of the local
kernel relations scales through the stochastic homogenization process so bulk measurements of the
reciprocal slope dE

dP provide initial estimates for η. The distribution f , defined in (25), quantifies

Ei

Ei

E

P

}

E

P
η∼∼ dP

dE

Model
Data

Ec

b

(a) (b)

Emin Emax(c)

Figure 9. (a) Asymptotic relations between the parameters η,Ec, b and the slope of the P -E rela-
tion after switching, the coercive field and the point where switching commences before remanence.
(b) The absolute metric (32) and Euclidean metric (34) between data and the model prediction.
(c) Cosine filter (33) used to minimize least squares differences in the switching region.
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the coercive properties of the E-P relation. The mean Ec quantifies the point at which the primary
switching occurs as illustrated in Figure 9a; hence Ec is asymptotically given by the coercive field
for the bulk material. The variance σ ≈ 2Ecc quantifies the variability in local coercive fields so that
materials with steep coercive transitions yield small values of c whereas large parameter values are
required when characterizing materials with gradual bulk switching. The parameter b quantifies the
variance in the effective field which determines, in part, the degree to which switching occurs before
remanence is reached. Materials with nearly linear E-P relations at remanence yield small values of
b whereas large values are required to accommodate significant switching before remanence.

Hence physical properties of the data yield initial estimates for η and Ec and provide quali-
tative techniques for ascertaining b, c, PR and C. This significantly facilitates the implementation
of least squares techniques used to determine model parameters and update these parameters to
accommodate slowly changing operating conditions.

Three least squares techniques have been considered to accommodate the switching and saturation
behavior inherent to hysteresis data. To formulate the least squares problems, let (Êi, P̂i), i =
1, · · · ,N , denote the field and corresponding polarization data measured throughout the hysteresis
cycle. Furthermore, let P (Êi; q) denote parameter-dependent model solutions provided by (28), (29)
or (30). For admissible parameters q ∈ Q, we then consider the following optimization problems:

min
q

N∑
i=1

∣∣∣P (Êi; q)− P̂i

∣∣∣2 , (32)

min
q

N∑
i=1

µi

∣∣∣P (Êi; q)− P̂i

∣∣∣2 , µi ≡ cos

[
2π · Êi − Emin

Emax − Emin

]
+ α, (33)

min
q

N∑
i=1

d
(
P (Êi; q)− P̂i

)
. (34)

The functional (32) penalizes absolute differences between the data and model. As illustrated in
Figure 9b, it will produce model fits which tend to be more accurate in the high gradient switching
regime than in the low gradient saturation region. For applications which require high accuracy
throughout the drive range, two techniques can be employed to modify the manner through which
the difference between the model and data are penalized. One alternative is to employ the functional
(33) which weights the data in the saturation region more heavily through a cosine filter of the type
illustrated in Figure 9c. A more accurate, but computationally more intensive, technique employs
the Euclidean metric d which minizes the distance between the model and data as illustrated in
Figure 9b. For each functional, initial parameter choices q0 are obtained through the previously
discussed asymptotic relations or a priori material information.

4.2 Experimental Validation for PZT5A, PZT5H and PZT4

To illustrate the accuracy and flexibility of the model and parameter estimation techniques for
a variety of compounds, we consider the characterization of PZT5A, PZT5H and PZT4 wafers.
In all cases, data was collected at 200 mHz to minimize frequency effects. For consistency, the
discretized model (30), with P given by (22) or (31), was employed in all three cases. However,
we note that analogous results have been obtained with the kernel (9) and the discretized version
of the statistical mechanics model (29). Finally, the limits Ni = Nj = 80 in (30) – obtained using
Nq = Np = 20 subdivisions with the 4 point Gaussian rule – ensured convergence of the Gaussian
quadrature routines.
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PZT5A

We consider first the characterization of hysteresis exhibited by PZT5A for various input field
levels. Data was collected from a rectangular 1.7 cm × 0.635 cm × 0.0381 cm wafer at peak voltages
ranging from 600 V to 1600 V. Corresponding field values were computed using the relation

E = V/h

where h = 3.81× 10−4 m denotes the thickness of the wafer. The resulting hysteretic E-P relations
are plotted in Figure 10.

The polarization was modeled using the relation (30) with the piecewise linear kernel (22). The
coercive field for the 1600 V data is 1.2 × 106 V/m and the slope after field reversal in saturation
is 3.6 × 108. These two values were respectively employed as initial estimates for Ec and η. The
functional (32) was then employed to estimate the parameters PR = 0.04 C/m2, Ec = 0.96507 ×
106 V/m, η = 9×108, c = 0.3582 V2/m2, b = 2.1407×1011 V2/m2 and C = 8.57×10−12 through a fit
to the 1600 V data. The model with these parameter values was then used to predict the hysteretic
E-P relation at the 600 V, 800 V and 1000 V input levels yielding the fits plotted in Figure 10. It is
observed that the model accurately quantifies the hysteresis through the switching region at 1600 V
but is less accurate near saturation since errors in this region are penalized less by the absolute
functional (32). The accuracy of the predictions at the lower drive levels attests to the flexibility of
the model for quantifying the E-P relation through a wide range of field inputs.

The use of the cosine-weighted functional (33) yields the parameters PR = 0.04 C/m2, Ec =
0.866010×106 V/m, η = 9.5×108, c = 0.4272 V2/m2, b = 1.9754×1011 V2/m2 and C = 7.9926×10−12

and produces a model fit with slightly improved accuracy in the saturation region but less accuracy
near the coercive field and at low drive levels (see Figure 11). Both algorithms provide sufficient
accuracy for quantifying hysteresis inherent to PZT5A for a broad range of applications.
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Figure 10. PZT5A data (– – –) and model predictions (——) with the parameters PR = 0.04 C/m2,
Ec = 0.96507×106 V/m, η = 9×108, c = 0.3582 V2/m2, b = 2.1407×1011 V2/m2, C = 8.57×10−12

determined by the absolute least squares functional (32). Abscissas: electric field (MV/m), ordinates:
polarization (C/m2).
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Figure 11. PZT5A data (– – –) and model predictions (——) with the parameters PR = 0.04 C/m2,
Ec = 0.866010 × 106 V/m, η = 9.5 × 108, c = 0.4272 V2/m2, b = 1.9754 × 1011 V2/m2, C =
7.9926 × 10−12 determined by the cosine-weighted least squares functional (33). Abscissas: electric
field (MV/m), ordinates: polarization (C/m2).

PZT5H

To illustrate the performance of the model for characterizing a second soft PZT compound, we
consider data collected from a 3.81 cm × 0.635 cm × 0.0381 cm PZT5H wafer at input levels ranging
from 600 V to 2200 V. As with the PZT5A sample, data was collected at 200 mHz to minimize
frequency effects.

For this data set, parameters were estimated through a fit to the 2200 V data and the resulting
model was used to predict the hysteretic E-P relation at lower drive levels. Initial values for Ec and
η were obtained from the coercive field Ec = 0.9×106 V/m and reciprocal slope dE

dP = 3.7×108, after
saturation, for the 2200 V data. The absolute least squares functional (32) yielded the parameters
PR = 0.04 C/m2, Ec = 0.747690 × 106 V/m, η = 6.5 × 108, c = 0.2612 V2/m2, b = 2.8425 ×
1011 V2/m2, C = 1.1526× 10−11 and fits depicted in Figure 12. The Euclidean metric (34) yielded
the parameter values PR = 0.04 C/m2, Ec = 0.698990 × 106 V/m, η = 6.5 × 108, c = 0.3439
V2/m2, b = 3.2407× 1011 V2/m2, C = 8.0932× 10−12 and fits depicted in Figure 13. It is observed
that because the absolute metric heavily penalizes discrepancies in high gradient regions, the fits in
Figure 12 are very accurate in the coercive region but saturate too quickly. The use of the Euclidean
metric provides more uniform penalties throughout the drive range and hence provides a model which
is accurate both in switching and saturation.

PZT4

The final compound that we consider is the hard material PZT4. Data collected from a 3.81 cm
× 0.635 cm × 0.381 cm wafer at input levels of 600 V through 1800 V is plotted in Figure 14. For
the 1800 V input, the coercive field 1.42 × 106 V/m reflects that more energy is required to turn
dipoles than in the softer PZT5 compounds.
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Figure 12. PZT5H data (– – –) and model predictions (——) with the absolute least squares
functional (32) used to determine the parameters PR = 0.04 C/m2, Ec = 0.747690 × 106 V/m,
η = 6.5× 108, c = 0.2612 V2/m2, b = 2.8425× 1011 V2/m2, C = 1.1526× 10−12. Abscissas: electric
field (MV/m), ordinates: polarization (C/m2).
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Figure 13. PZT5H data (– – –) and model predictions (——) with the Euclidean least squares
functional (34) used to determine the parameters PR = 0.04 C/m2, Ec = 0.698990 × 106 V/m,
η = 6.5× 108, c = 0.3439 V2/m2, b = 3.2407× 1011 V2/m2, C = 8.0932× 10−12. Abscissas: electric
field (MV/m), ordinates: polarization (C/m2).
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Figure 14. PZT4 data (– – –) and model predictions (——) with the parameters PR = 0.045 C/m2,
Ec = 1.05×105 V/m, η = 4.0×108, c = 0.3018 V2/m2, b = 2.1924×1011 V2/m2, C = 6.8287×10−12.
Abscissas: electric field (MV/m), ordinates: polarization (C/m2).

The three functionals (32)-(34) yield roughly equivalent parameters and the model response with
the parameters PR = 0.045 C/m2, Ec = 1.05 × 105 V/m, η = 4.0 × 108, c = 0.3018 V2/m2,
b = 2.1924 × 1011 V2/m2, C = 6.8287 × 10−12, estimated through a fit to the 1800 V data, is
compared with the data in Figure 14. It is observed that while model is very accurate in the high
drive regime, it does not fully quantify the sharp transition prior to coercivity due to limitations
resulting from the choice of the lognormal and normal functions used to respectively characterize
the densities of the coercive and effective fields. This tendency is accentuated when the model is
subsequently used to predict the 600 V E-P relation. While the model provides sufficient accuracy
for applications such as control design, the discrepancy illustrates that improvements can be made
in the model when modeling hard compounds. We are presently investigating the development of
higher-order kernels and techniques for identifying general densities to provide additional accuracy
for high performance applications which utilize PZT4 transducers.

4.3 Biased Asymmetric Minor loops

To illustrate the capability of the model to quantify biased minor loops, the field plotted in
Figure 15a was input to the model to generate the E-P relation depicted in Figure 15b. The
parameters were taken to be PR = 0.04 C/m2, Ec = 0.698990 × 106 V/m, η = 6.5 × 108, c =
0.6877 V2/m2, b = 3.2407 × 1011 V2/m2, C = 8.0932 × 10−12 which are close to those identified
for PZT5H (the parameters were modified slightly to highlight aspects of the biased loops). Loop 1
illustrates the capability of the model to characterize the quadratic Raleigh behavior experimentally
observed for low drive levels whereas Loop 2 illustrates that the model enforces closure of biased,
asymmetric minor loops on the initial polarization curve. The continuity in slope of the initial
curve, following the closure of Loop 2, illustrates that the model incorporates the deletion property
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Figure 15. (a) Field input E, and (b) polarization predicted by the discretized model (30).

which, along with congruency, forms one of the necessary and sufficient conditions for classical
Preisach models [8]. Loops 3 and 4 illustrate the ability of the model to enforce closure of multiply
nested loops while Loop 5 encapsulates biased behavior near saturation. When combined with the
experimental results in Section 4.2, the behavior depicted here provides the model with substantial
flexibility for material characterization and control design.

5 Concluding Remarks

The theory presented in this paper provides a technique for quantifying constitutive nonlinearities
and hysteresis inherent to piezoelectric compounds in a manner conducive to bulk material char-
acterization and model-based control design. Through the combination of free energy analysis at
the lattice or domain level with the assumption that certain physical parameters are stochastically
distributed, macroscopic models having a small number of parameters (5-6) are constructed. Fur-
thermore, several of these parameters can be correlated with physical attributes of the E-P data
to facilitate parameter identification and model updating to accommodate changing operating con-
ditions. The model accommodates transient dynamics in the E-P relation, enforces return point
memory, and guarantees the closure of both symmetric and biased, asymmetric minor loops. The
model does not enforce congruency in the saturation regions of the E-P curve which reflects the
measured behavior of the materials in these regions.

The numerical examples and comparison with experimental data illustrate low-frequency, fixed-
temperature capabilities of the model. In its present formulation, however, it also incorporates certain
relaxation mechanisms and temperature-dependencies. The latter effect has been validated in the
context of relaxor ferroelectric compounds (PMN) and a comprehensive set of examples illustrating
the quantification of these properties in PZT will appear in a future publication. The model in its
present form does not incorporate polarization changes due to variable stresses and these extensions
are under current investigation.

The use of Algorithm 1 renders the model highly efficient so that multiloop simulations run in
the order of seconds on an aging and overworked workstation. In the algorithm described in [34], the
monotonicity of the modeled E-P relation was invoked to construct an inverse model for inclusion in
feedforward or feedback loops to linearize (at least approximately) the response of actuators operating
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in nonlinear and hysteretic and nonlinear regimes. The analogous magnetic model and inverse are
employed in [17] to construct robust control designs to achieve high accuracy, high speed position
control for Terfenol-D transducers. Hence the unified nature of the modeling approach facilitates
unified control designs that utilize model-based inverse compensators.
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